Wisconsin's changing climate and forecasting invasive species spread.

Jason E Granberg

Wisconsin Department of Natural Resources

Great Lakes Panel on Aquatic Nuisance Species Meeting

June 26-27, 2018

Major topics

- Future climate scenarios for Wisconsin from WICCI
- Selecting species for analysis
- Using Risk Assessment Mapping Program (RAMP) for climate match scores
- Applying RAMP to Wisconsin
- Identifying species patterns for current and future threats
- How other states may follow this process

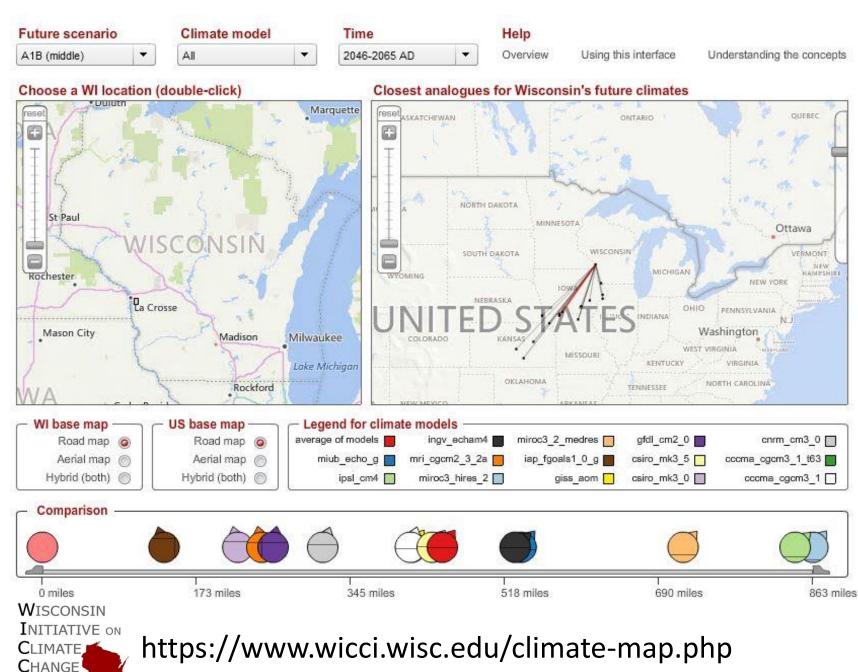
Future climate scenarios

- In coming decades Wisconsin's climate is expected to shift with changes in precipitation and temperature.
- Areas of Wisconsin are expected to resemble adjacent states. Known as "climate analogues".
- As climates shift ecosystems will be under increased strain as community compositions, dynamics, and species-specific responses are altered by novel climates.
- However it is possible to predict how species may respond to future climates using free modelling tools.

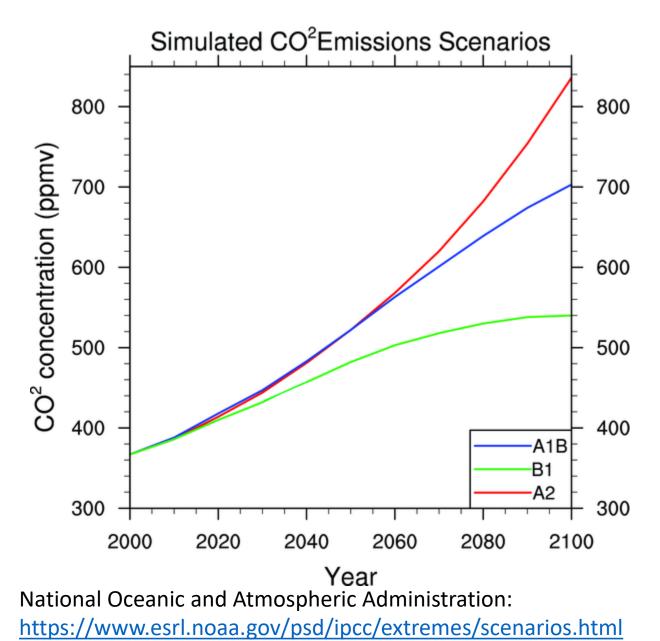
WISCONSIN INITIATIVE ON CLIMATE CHANGE IMPACTS

IMPACTS AND ADAPTATION

Predicting how species respond in the future


Since there are thousands of species, how do we select the targets for analysis? See what species are found in climate analogue states.

WICCI Interactive Mapping Tool


- WICCI has a climate analogue match tool.
- Modelled for all of Wisconsin at USGS subquadrant cells (53 square miles each)
- Predicts how the target area may appear under future climate scenarios.

IMPACTS

WICCI Interactive Mapping Tool

- Each cell was assessed using the IPCC median emission scenario (A1B)
 - Mid Century (2046 to 2065)
 - End Century (2081 to 2100)
- Average of WICCI model was used to define analogue state boundaries for each cell.
 - These other state boundaries help determine which species to analyze with climate matching tools.
 - States include: Wisconsin, Illinois, Indiana, Iowa, Kansas, Minnesota, Nebraska, Ohio, Michigan, & Virginia

Species Lists

- Lists include:
 - EDDMapS records from WICCI analogue states.
 - Wisconsin's NR40: Invasive Species Rule
 - Midwest Invasive Plant Network (MIPN) -Invasive Plant list
 - USFWS Ecological Risk Screening Summaries (High risk species)
- **MIPN**.org • 436 species found for aquatic, wetland & terrestrial habitats.
- Species are then analyzed using **USFWS'** Risk Assessment Mapping Program (RAMP)

Chapter NR 40

INVASIVE SPECIES IDENTIFICATION, CLASSIFICATION AND CONTROL

R 40.03 R 40.04	Purpose. Definitions. Classifications. Prohibited category. Emergency additions to prohibited category.	NR 40.07 NR 40.08	Restricted category. Invasive species permits. Preventive measures. Enforcement. Interagency coordination.
R 40.045	Emergency additions to prohibited category.	NR 40.09	Interagency coordination.

NR 40.01 Purpose. The purpose of this chapter is to identify, classify and control invasive species in Wisconsin as part of the department's statewide program required by s. 23.22 (2) (a), Stats.

History: CR 08-074; cr. Register August 2009 No. 644, eff. 9-1-09.

NR 40.02 Definitions. For purposes of this chapter: (1) "Algae" means a predominately photosynthetic eukaryotic organism ranging from unicellular to macroscopic forms, lacking true roots, stems, leaves, and embryos,

Early Detection & Distribution Mapping System

Midwest Invasive Plant Network

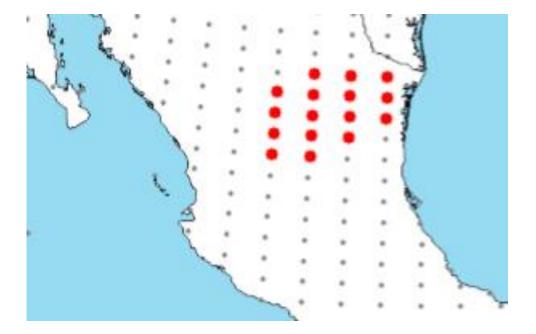
agricul-

of infestation.

Ecological Risk Screening Summaries High Risk FISHES

Ecological Risk Screening Summaries High Risk CRUSTACEANS

Ecological Risk Screening Summaries High Risk MOLLUSKS


Ecological Risk Screening Summaries High Risk PLANTS

Ecological Risk Screening Summaries High Risk OTHER VERTEBRATES

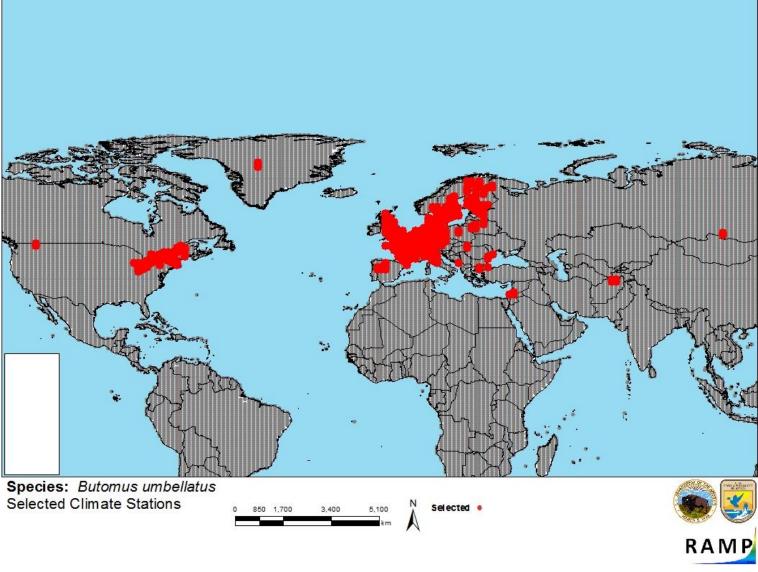
Ecological Risk Screening Summaries High Risk OTHER INVERTEBRATES

USFWS Risk Assessment Mapping Program (RAMP)

- USFWS uses RAMP for ecological risk screening summaries.
- RAMP uses environmental niche modelling: Climatch and CLIMATE algorithms.
- RAMP looks at similarities between selected global climate stations and matches them to climate stations within North America.
 - Looks at where target species is found now, then extrapolates where it can potentially live by correlating 16 climate variables.
- Has current and future climate matching at mid- and end-century.

Example of climate matching stations. **Red** stations are linked to a species of interest while gray stations lack records.

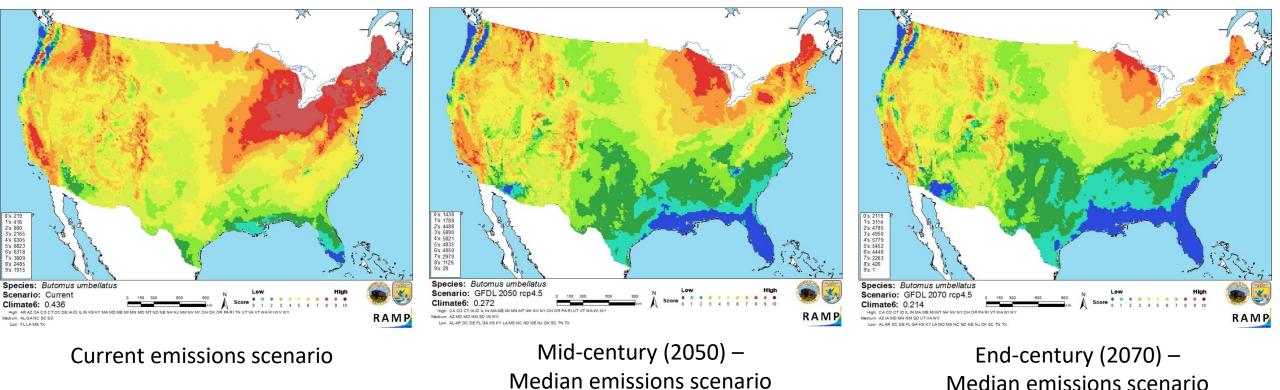
USFWS Risk Assessment Mapping Program (RAMP)


- 16 Climate Variables used in RAMP
- Divided into two major categories:

Temperature Variables Average Mean Temperature Max Temperature of Warmest Month Min Temperature of Coldest Month Temperature Annual Range Mean Temperature of Wettest Quarter Mean Temperature of Driest Quarter Mean Temperature of Warmest Quarter Mean Temperature of Coldest Quarter Precipitation Variables

Annual Precipitation Precipitation of Wettest Month Precipitation of Driest Month Precipitation of Seasonality Precipitation of Wettest Quarter Precipitation of Driest Quarter Precipitation of Warmest Quarter Precipitation of Coldest Quarter

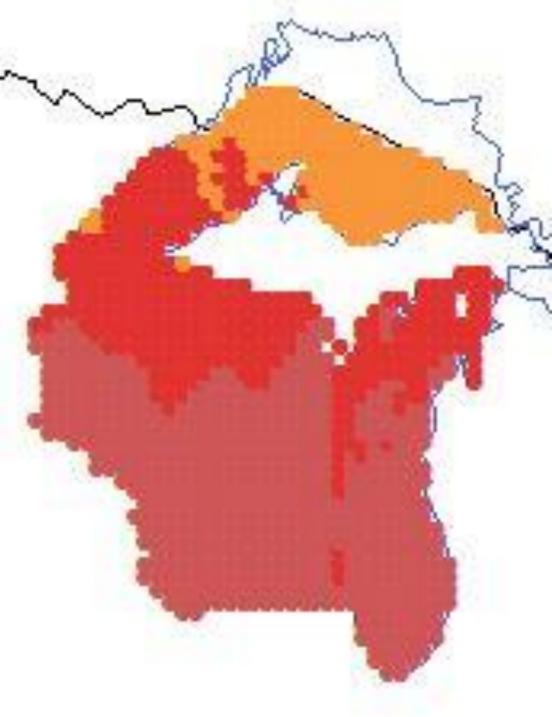
Running RAMP...


- Easy to use program in ArcGIS.
- Name the species in prompt script.
- Script gets records from Global Biodiversity Information Facility (GBIF), a international species record database. It has 987,000,000+ records across aquatic, wetland, terrestrial species.
- Obtains a subsample of records and joins them to climate stations.
- User can manually expand stations with local records
 - WDNR's SWIMS
 - UW-Herbarium records

Example of GBIF records linked to climate stations

Climate match output: National map for each species

Example: Flowering rush (*Butomus umbellatus*)

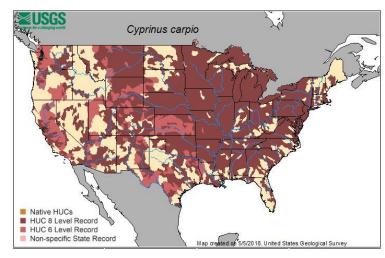

Values range from **0 (Blue) to 5 (Yellow) to 10 (Red)**. The warmer the colors, the better the climate match & suitability. Scores 6+, climate matches. 1,311 simulations for all species

RAMP output in Wisconsin

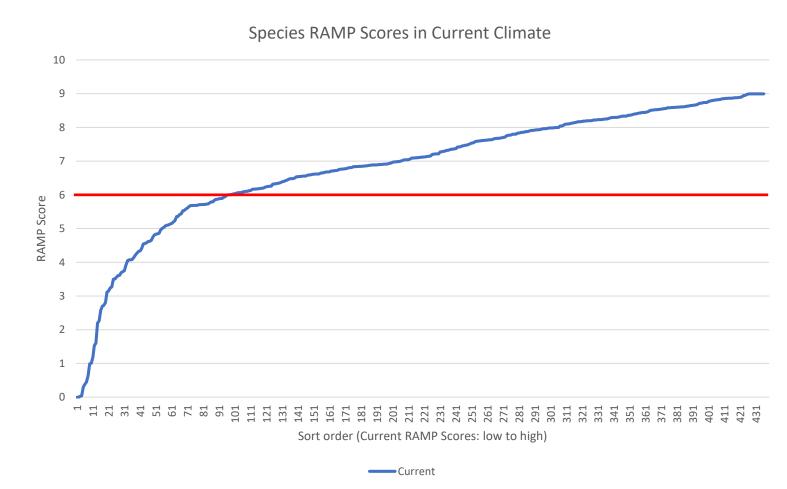
<u>How suitable is this species to Wisconsin?</u> National scores clipped to Wisconsin, southern Lake Superior and Lake Michigan.

Scores interpreted using "Climate 6 Proportion Score" and Score Average.

If the species' average is greater than 6, then the climate is suitable for the species at some point during its life history.

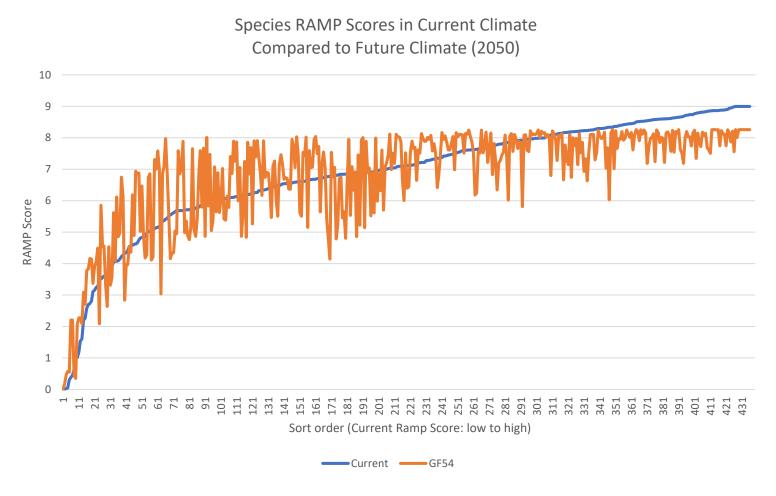

Species referenced for presence/absence. Is it in Wisconsin?

- For plants, I checked for records in University of Wisconsin's Flora of Wisconsin website for herbarium records, verified & vouchered SWIMS records.
- For animal species, I checked records from USGS' Nonindigenous Aquatic Species (NAS), verified & vouchered SWIMS records.


Wisconsin Department of Natural Resources

Surface Water Integrated Monitoring System (SWIMS)

Outputs: General patterns for all species


- 340/436 (78%) target species are compatible with current climate.
- 335/436 (76%) target species are compatible with future climate at 2050.
- 323/436 (74%) target species are compatible with future climate at 2070.
- 28 species increase from unsuitable in current climate to suitable in future climate.
 - Future RAMP Score is >= 6
 - 8 records in climate 4 range, 21 records in climate 5 range move to suitable
- 33 species decrease from suitable in current climate to unsuitable in future climate.
 - Future RAMP SCORE < 6
 - 32 records in climate 6 range, 1 record in climate 7 range move to unsuitable

Outputs: General patterns for all species

- X-axis Sort order (smallest to largest RAMP score)
- Y-axis RAMP score
- Scores greater than 6 (red line) are compatible with current climate.
- Scores show we are sampling across a range of responses.

Outputs: Overall changes in climate matching between time periods for all species

* Species records maintain position on X-axis

- High RAMP scoring species (7+) under the current climate are more likely to remain compatible with future climate scenarios.
- Lower RAMP scoring species tend to vary in compatibility under future scenarios. So its harder to predict overall patterns with low ranking species.

Top Ranking Species: Wetland Plants in Wisconsin

Agrostis gigantea	redtop	Ambrosia artemisiifolia	annual ragweed
Alnus glutinosa	European alder	Veronica officinalis	common speedwell
Dactylis glomerata	orchardgrass	Phleum pratense	timothy
Morus alba	white mulberry	Acorus calamus	calamus
Phragmites australis	common reed	Lonicera tatarica	Tatarian honeysuckle
Rumex crispus	curly dock	Berberis thunbergii	Japanese barberry
Salix alba	white willow	Achillea millefolium	common yarrow
Trifolium pratense	red clover	Elaeagnus angustifolia	Russian olive
Phalaris arundinacea	Reed canarygrass	Stellaria media	common chickweed
Solanum dulcamara	climbing nightshade	Ranunculus acris	tall buttercup

Top Ranking Species: Wetland Plants *not* in Wisconsin yet...

Eichhornia crassipes	common water hyacinth*	Polygonum caespitosum	Oriental Lady's thumb
Lonicera sempervirens	trumpet honeysuckle	Rubus phoenicolasius	wine raspberry
Petasites hybridus	pestilence wort	Marsilea quadrifolia	European waterclover
Jacobaea vulgaris	stinking willie	Microstegium vimineum	Nepalese browntop
Ligustrum sinense	Chinese privet	Schoenoplectiella mucron	ate bog bulrush
Persicaria perfoliata	Asiatic tearthumb	Saccharum ravennae	ravennagrass
Bothriochloa bladhii	Caucasian bluestem	Epilobium parviflorum	mallflower hairy willowherb
Juncus inflexus	European meadowrush	Kummerowia striata	Japanese clover
Buddleja davidii	orange eye butterflybush	Arundo donax	giant reed
Carex acutiformis	lesser pond sedge	Mentha pulegium	pennyroyal

* Site in Wisconsin has been controlled.

Top Ranking Species (RAMP 6+): Aquatic Plants in Wisconsin

 Nasturtium officinale 	watercress
 Potamogeton crispus 	curly pondweed
 Hydrilla verticillata 	waterthyme
 Najas minor 	brittle waternymph
 Myriophyllum spicatum 	Eurasian watermilfoil
• Nitellopsis obtuse	starry stonewort
 Nymphoides peltata 	yellow floatingheart
 Nelumbo nucifera 	sacred lotus

Top Ranking Species (RAMP 6+): Aquatic Plants not in Wisconsin yet...

 Eichhornia crassipes 	common water hyacinth
• Egeria densa	Brazilian waterweed
 Marsilea quadrifolia 	European waterclover
• Trapa natans	water chestnut

Top Ranking Species (RAMP 6+): Aquatic Animals in Wisconsin

•	Dreissena polymorpha	zebra mussel
•	Cyprinus carpio	common carp
•	Orconectes rusticus	rusty crayfish
•	Bythotrephes longimanus	spiny waterflea
•	Dreissena bugensis	quagga mussel
•	Neogobius melanostomus	Round goby
•	Cipangopaludina chinensis	Chinese mystery snail
•	Morone americana	White perch
•	Alosa pseudoharengus	Alewife
•	Bosmina coregoni	a waterflea
•	Oncorhynchus tshawytscha	Chinook salmon

Top Ranking Species (RAMP 6+): Aquatic Animals *not* in Wisconsin yet...

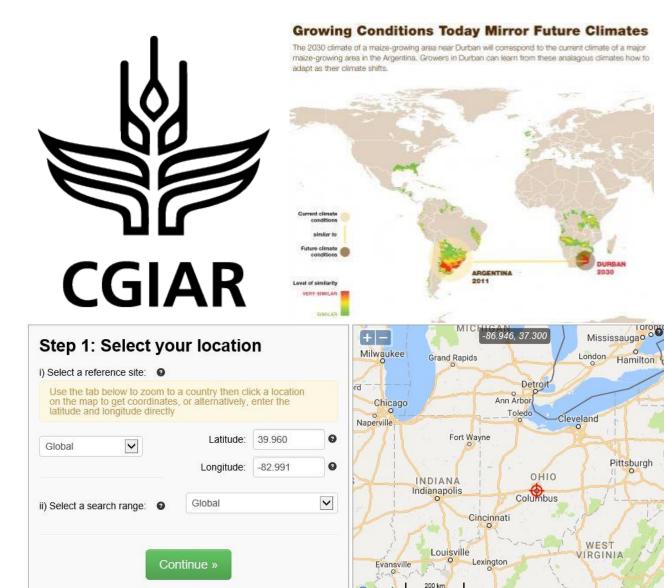
• Ameiurus catus	White catfish
 Pterygoplichthys pardalis 	Amazon sailfin catfish
• Tilapia zillii	redbelly tilapia
• Perccottus glenii	Chinese sleeper
 Oreochromis niloticus 	Nile tilapia
• Silurus glanis	wels catfish
Rhodeus sericeus	Amur bitterling
 Hypomesus nipponensis 	Wakasagi
 Oreochromis mossambicus 	Moazambique tilapia
 Pseudorasbora parva 	stone moroko

Limitations

- GBIF subsampling doesn't keep all the records or fields with other information. No easy way to QA/QC records.
- If a species is under-surveilled, it can have poor RAMP fitting
 - Graceful cattail (*Typha laxmanii*) has a RAMP score of 5, but is likely a new threat in Wisconsin.

When assessing new threats with RAMP

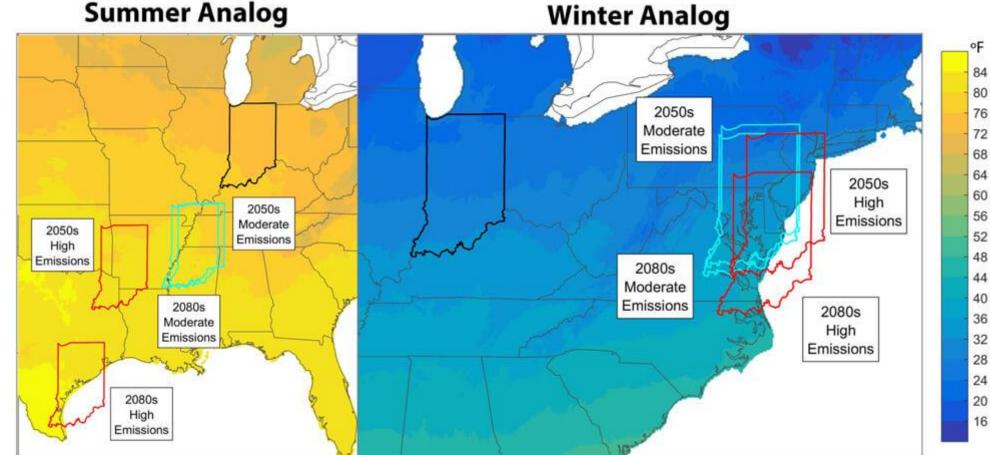
- Use RAMP scores with literature reviews:
 - Potential environmental, economic, or human health impacts
 - Life history traits
 - Reproductive rates
 - Abundance and distribution
 - Vulnerable habitats or species-specific habitat needs
 - Methods of control
 - Ability to naturalize with native ecosystems.
- RAMP scores are coarse-grained and not useful for small scale planning at state scale.
- RAMP scores do not imply competitive advantage of one species over another.


RAMP outputs for other Great Lakes States

- Once RAMP scores have been calculated nationally, they can be clipped for different study areas.
- Current range of selected species were selected for impacts to Wisconsin, but may not capture different threats to other Great Lakes States.
 - Our list doesn't consider species climate suitabilty within other states.
 - Eastern Great Lakes states may have different climate analogue matches than what was found for Wisconsin.
 - Other states will need to conduct their own climate matching to find additional species for analysis.

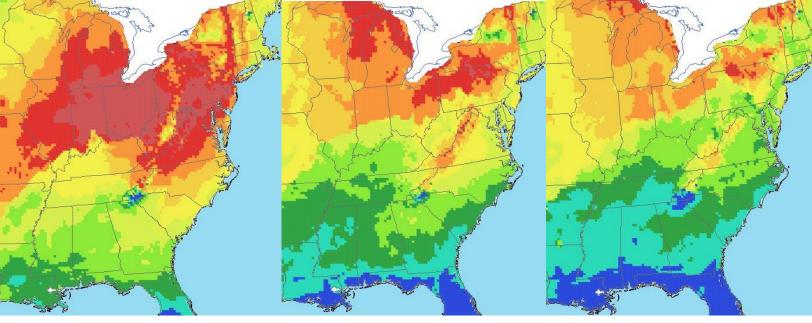
So...how do other states find target species?

Climate analogue matching tools for other areas: CGIAR


- CGIAR (Consultative Group for International Agricultural Research) has a climate analogue matching tool.
- <u>http://www.ccafs-analogues.org/tool/</u>
- Allows you to find matches between selected areas based on emission models (A1B)
- Uses 16 climate match variables found in RAMP.
- Still developing, web portal doesn't always work.

data @2018 Google INEGL

Climate analogue matching tools for other areas: Literature


- There may be literature specific to your geography

https://ag.purdue.edu/indianaclimate/indiana-climate-report/

Climate analogue matching tools for other areas: Use RAMP itself.

- Use the RAMP tool to select all the climate stations within your state.
- Simulate current and future climates.
- Consider southern states that have RAMP scores near 6+

Ohio Current

Ohio 2050 median emissions scenario Ohio 2070 median emissions scenario

Questions

For compete list of RAMP outputs send a request to my email: Jason.Granberg@Wisconsin.Gov